Exercise 1

Suppose that u_{1} and u_{2} are solutions of (1). Show that $c_{1} u_{1}+c_{2} u_{2}$ is also a solution, where c_{1} and c_{2} are constants. (This shows that (1) is a linear equation.)

Solution

Equation (1) is

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=0 . \tag{1}
\end{equation*}
$$

Suppose that u_{1} and u_{2} are solutions of this PDE. Then they satisfy

$$
\frac{\partial u_{1}}{\partial t}+\frac{\partial u_{1}}{\partial x}=0 \quad \text { and } \quad \frac{\partial u_{2}}{\partial t}+\frac{\partial u_{2}}{\partial x}=0 .
$$

Check to see if $c_{1} u_{1}+c_{2} u_{2}$ is also a solution by plugging it into equation (1) and using the fact that derivatives are linear operators.

$$
\begin{aligned}
& 0 \stackrel{?}{=} \frac{\partial}{\partial t}\left(c_{1} u_{1}+c_{2} u_{2}\right)+\frac{\partial}{\partial x}\left(c_{1} u_{1}+c_{2} u_{2}\right) \\
& \stackrel{?}{=} c_{1} \frac{\partial u_{1}}{\partial t}+c_{2} \frac{\partial u_{2}}{\partial t}+c_{1} \frac{\partial u_{1}}{\partial x}+c_{2} \frac{\partial u_{2}}{\partial x} \\
& \stackrel{?}{=} c_{1}\left(\frac{\partial u_{1}}{\partial t}+\frac{\partial u_{1}}{\partial x}\right)+c_{2}\left(\frac{\partial u_{2}}{\partial t}+\frac{\partial u_{2}}{\partial x}\right) \\
& \stackrel{?}{=} c_{1}(0)+c_{2}(0) \\
&=0
\end{aligned}
$$

Therefore, $c_{1} u_{1}+c_{2} u_{2}$ is a solution of equation (1) as well.

